BZOJ 2150: 部落战争(最小不相交路径覆盖)

Description

lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土。 A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住。lanzerb把自己的部落分成若干支军队,他们约定: 1. 每支军队可以从任意一个城镇出发,并只能从上往向下征战,不能回头。途中只能经过城镇,不能经过高山深涧。 2. 如果某个城镇被某支军队到过,则其他军队不能再去那个城镇了。 3. 每支军队都可以在任意一个城镇停止征战。 4. 所有军队都很奇怪,他们走的方法有点像国际象棋中的马。不过马每次只能走1*2的路线,而他们只能走R*C的路线。 lanzerb的野心使得他的目标是统一全国,但是兵力的限制使得他们在配备人手时力不从心。假设他们每支军队都能顺利占领这支军队经过的所有城镇,请你帮lanzerb算算至少要多少支军队才能完成统一全国的大业。

Input

第一行包含4个整数M、N、R、C,意义见问题描述。接下来M行每行一个长度为N的字符串。如果某个字符是’.’,表示这个地方是城镇;如果这个字符时’x’,表示这个地方是高山深涧。

Output

输出一个整数,表示最少的军队个数。

Sample Input

【样例输入一】
3 3 1 2

.x.

【样例输入二】
5 4 1 1
….
..x.
…x
….
x…

Sample Output

【样例输出一】
4

【样例输出二】
5
【样例说明】

【数据范围】
100%的数据中,1<=M,N<=50,1<=R,C<=10。

好久之前写的。。。
因为只能从上走到下,这样相当于是一个DAG,而且不能路径相交。所以就套路拆点做一做就可以了。

发表评论

电子邮件地址不会被公开。 必填项已用*标注