月度归档:2016年12月

BZOJ 4726: [POI2017]Sabota?(树形dp)

Description

某个公司有n个人, 上下级关系构成了一个有根树。其中有个人是叛徒(这个人不知道是谁)。对于一个人, 如果他
下属(直接或者间接, 不包括他自己)中叛徒占的比例超过x,那么这个人也会变成叛徒,并且他的所有下属都会变
成叛徒。你要求出一个最小的x,使得最坏情况下,叛徒的个数不会超过k。

Input

第一行包含两个正整数n,k(1<=k<=n<=500000)。
接下来n-1行,第i行包含一个正整数p[i+1],表示i+1的父亲是p[i+1](1<=p[i+1]<=i)。

Output

输出一行一个实数x,误差在10^-6以内都被认为是正确的。

Sample Input

9 3
1
1
2
2
2
3
7
3

Sample Output

0.6666666667

HINT

答案中的x实际上是一个无限趋近于2/3但是小于2/3的数
因为当x取2/3时,最坏情况下3,7,8,9都是叛徒,超过了k=3。
二分的思路超时了囧,据说有卡过的然而不知道怎么搞的。。所以学习了O(n)的做法。其实和二分的差不多,只不过dp的直接就是答案了。
发现一个子节点如果无法成为叛徒,而且叛徒节点在他的子树内,那么他的父亲肯定是无法变成叛徒的。而且通过这点我们可以知道,最坏情况意味着要叛徒尽可能的多,那么初始叛徒节点肯定要选到叶子上。而且这些叛徒肯定是在一起的最后是一棵子树的形式。还可以知道叛徒的影响是通过一条链往上爬的。
为i这个节点恰好不是叛徒的时候x的最小值。因为x如果再小i就成为了叛徒。
假设i有一个儿子j,那么如果j不是叛徒,那么单独考虑这一条链的影响,。如果j是叛徒,那么要让i不是叛徒,那么x肯定要大于。所以但就j->i这条链来说,。那么对于所有i的儿子取一个max就好了。
时间复杂度:O(n)

 

BZOJ 2241: [SDOI2011]打地鼠(暴力)

Description

打地鼠是这样的一个游戏:地面上有一些地鼠洞,地鼠们会不时从洞里探出头来很短时间后又缩回洞中。玩家的目标是在地鼠伸出头时,用锤子砸其头部,砸到的地鼠越多分数也就越高。

游戏中的锤子每次只能打一只地鼠,如果多只地鼠同时探出头,玩家只能通过多次挥舞锤子的方式打掉所有的地鼠。你认为这锤子太没用了,所以你改装了锤子,增加了锤子与地面的接触面积,使其每次可以击打一片区域。如果我们把地面看做M*N的方阵,其每个元素都代表一个地鼠洞,那么锤子可以覆盖R*C区域内的所有地鼠洞。但是改装后的锤子有一个缺点:每次挥舞锤子时,对于这R*C的区域中的所有地洞,锤子会打掉恰好一只地鼠。也就是说锤子覆盖的区域中,每个地洞必须至少有1只地鼠,且如果某个地洞中地鼠的个数大于1,那么这个地洞只会有1只地鼠被打掉,因此每次挥舞锤子时,恰好有R*C只地鼠被打掉。由于锤子的内部结构过于精密,因此在游戏过程中你不能旋转锤子(即不能互换R和C)。

你可以任意更改锤子的规格(即你可以任意规定R和C的大小),但是改装锤子的工作只能在打地鼠前进行(即你不可以打掉一部分地鼠后,再改变锤子的规格)。你的任务是求出要想打掉所有的地鼠,至少需要挥舞锤子的次数。

Hint:由于你可以把锤子的大小设置为1*1,因此本题总是有解的。

Input

第一行包含两个正整数M和N;

下面M行每行N个正整数描述地图,每个数字表示相应位置的地洞中地鼠的数量。

Output

输出一个整数,表示最少的挥舞次数。

Sample Input

3 3

1 2 1

2 4 2

1 2 1

Sample Output

4

【样例说明】

使用2*2的锤子,分别在左上、左下、右上、右下挥舞一次。

【数据规模和约定】

对于100%的数据,1<=M,N<=100,其他数据不小于0,不大于10^5

n,m都小于等于100,发现可以n^4暴力。暴力枚举矩形的长和宽,然后在所给出的矩阵中验证。可以从左上角开始一步步走,反正不会超时。。。

 

BZOJ 1477: 青蛙的约会(扩展欧几里得模板题)

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行”Impossible”

Sample Input

1 2 3 4 5

Sample Output

4
之前写计算器,发现自己的扩欧板子忘光了,所以就写了个模板题熟悉一下。
 推之:
n-m知道,L也知道,求cnt的最小正整数解。